Energetická efektivnost v budovách s využitím sběrnicové technologie KNX (1)

Legislativní požadavky na úspory energií v budovách

Optimalizace energetické účinnosti v budovách znamená, že:

- spotřebováváme energii jen v okamžiku, kdy ji opravdu potřebujeme
- spotřebujeme jen skutečně potřebné množství energie
- spotřebovanou energii využijeme s nejvyšší možnou účinností

Projektování budov s využitím inteligentních a vzájemně propojených technických systémů budov (vytápění, větrání, chlazení, klimatizace, příprava teplé vody a osvětlení) významně přispívá k umírněnému využívání energie způsobem, který pokrývá právě a jen aktuálně vzniklé požadavky.

Centrální role inteligentního řízení budov

Vedle dopravy a průmyslu je dalším největším spotřebitelem energie provoz budov. Topení, chlazení a osvětlení obytných a nebytových budov spotřebuje v technologicky vyspělých státech přibližně 40 % veškeré energie, což je podíl, který vyžaduje velkou pozornost.

Na evropské úrovni byla v roce 2002 vydána směrnice Evropského parlamentu a Rady č. 2002/91/EC o energetické náročnosti budov, jejímž hlavním požadavkem je snížení spotřeby energie v budovách. Pro její implementaci byla vydána řada evropských norem, např. EN 15232 Energetická náročnost budov – Vliv automatizace, řízení a správy budov. V České republice byla směrnice implementována Zákonem č. 406/2000 Sb. o hospodaření energií a Vyhláškou 148/2007 o energetické náročnosti budov.

Zákon č. 406/2000 Sb. o hospodaření energií mimo jiné vyžaduje, aby splnění požadavků na energetickou náročnost budovy doložil stavebník, vlastník budovy nebo společenství vlastníků jednotek průkazem energetické náročnosti při:

- a) výstavbě nových budov,
- b) větších změnách dokončených budov s celkovou podlahovou plochou nad 1 000 m², které ovlivňují jejich energetickou náročnost,
- c) prodeji nebo nájmu budov nebo jejich částí, jde-li o případy podle písmene a) nebo b)

Provozovatelé budov využívaných pro potřeby školství, zdravotnictví, kultury, obchodu, sportu, ubytovacích a stravovacích služeb, zákaznických středisek odvětví vodního hospodářství, energetiky, dopravy a telekomunikací a veřejné správy o celkové podlahové ploše nad 1 000 m² musí umístit průkaz na veřejně přístupném místě v budově.

V roce 2010 byla schválena přepracovaná směrnice Evropského parlamentu a Rady č. 2010/31/EU o energetické náročnosti budov, která dále zpřísňuje požadavky na energetickou náročnost budov. Již od roku 2013 musí členské státy EU zajistit, aby nové budovy plnily minimální požadavky na energetickou náročnost budov. Také stávající budovy procházející větší rekonstrukcí budou muset tyto minimální požadavky plnit.

Nejpozději od roku 2019 pak budou muset být všechny nové budovy užívané a vlastněné orgány veřejné moci budovami s téměř nulovou spotřebou energie. Nejpozději od roku 2021 se tento požadavek bude týkat všech nových budov. V České republice se však plánuje, že přísnějšími požadavky se nové budovy nebudou řídit až od roku 2019, resp. 2021. Bude zvoleno postupné zavádění do praxe, přičemž první vlna zpřísnění požadavků přijde pravděpodobně již v roce 2015.

Od roku 2013 bude při výstavbě, prodeji nebo pronájmu budovy či její ucelené části povinně vydáván certifikát energetické náročnosti. V budovách, které často navštěvuje veřejnost, musí být certifikát

vystaven na nápadném místě. Certifikát musí získat a vystavit také orgány veřejné moci pro jimi užívané budovy často navštěvované veřejností s celkovou užitkovou podlahovou plochou nejméně 500 m². Od července 2015 to bude od 250 m².

Certifikáty musí obsahovat energetickou náročnost budovy (celková vypočtená roční dodaná energie v GJ potřebná na vytápění, větrání, chlazení, klimatizaci, přípravu teplé vody a osvětlení), referenční hodnotu (minimální požadavky) a doporučení na snížení energetické náročnosti.

Evropská norma EN 15232 – Klíčový příspěvek k celosvětovému požadavku na zvýšení energetické účinnosti

Současný světový trend je charakterizován podporou energeticky účinných technologií. Evropská norma EN 15232 (Energetická náročnost budov – Vliv automatizace, řízení a správy budov) byla zpracována v úzké návaznosti na evropskou směrnici 2002/91/EC o energetické náročnosti budov. Norma uvádí metody pro vyhodnocení vlivu automatizace budov a technického řízení budov na energetickou spotřebu budov.

Za tím účelem byly zavedeny čtyři třídy energetické účinnosti (A až D). Jakmile je budova vybavena systémy automatizace a řízení, je přiřazena k jedné z těchto tříd. Potenciální úspory tepelné a elektrické energie je možno vypočítat pro každou tuto třídu podle typu budovy a jejího účelu. Hodnoty energetické třídy C jsou pak využívány jako referenční hodnoty pro porovnání účinnosti.

Následující schéma ukazuje rozdíly ve spotřebě energie pro tři typy budov rozdělených do tříd energetické účinnosti A, B a D a jejich porovnání se základními hodnotami třídy C (například u budovy třídy A je v kancelářích možno dosáhnout 30% úspory tepelné energie oproti kancelářím v budově třídy C).

Automatizace a řízení budov – třídy účinnosti podle EN 15232	1 -	initel účinno tepelnou er			initel účinno elektrickou e	
	kancelář	škola	hotel	kancelář	škola	hotel
Systém automatizace a řízení budovy (BACS) s vysokou energetickou účinnosti a vysoce vý- konný systém technické správy budovy (TBM)	0,70	0,80	0,68	0,87	0,86	0,90
Pokročilý BACS a TBM	0,80	0,88	0,85		0,93	0,95
Standardní BACS	1	1	1	1	1	1
BACS bez funkce energetické účinnosti	1,51	1,20	1,31	1,10	1,07	1,07

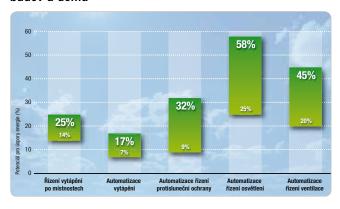
KNX předmětem výzkumu – potenciál úspor energie s využitím moderních elektrických instalací

"Potenciál úspor energie s využitím moderních elektrických instalací" Ústav budov a energetických systémů, který je součástí Univerzity aplikovaných přírodních věd v Biberachu a specializuje se na automatizaci budov, provedl v roce 2008 rešerši literatury na téma "Potenciál úspor energie s využitím moderních elektrických instalací". Pod vedením Prof. Dr. Ing. Martina Beckera byly prostudovány hlavní literární zdroje, s výsledkem orientovaným na zjištění potenciálu úspor energie. Studie byla zadána Centrálním svazem elektrotechniky a elektronického průmyslu (ZVEI).

Sběrnicové systémy, jako např. KNX, jsou ve studiích často zmiňovány jako technologie umožňující dosažení úspor energie. Široký rozptyl uváděných hodnot v určitých oblastech je možno připsat celé řadě faktorů – aplikacím zahrnujícím vícero funkcí, provoznímu charakteru příslušných zkoušek, rozdílu v definici různých funkcí atp. Přesto závěr výzkumu nenechává čtenáře na pochybách – inteligentní řízení budov může významně přispět ke zvýšení energetické účinnosti budov.

26 6/2012 | idb | journal

	Řízení topení/chlazení	Ventilace/řízení klimatizace	Osvětlení	Ochrana proti slunečnímu záření
A	Individuální řízení jednotlivých místností s komunikací mezi kontroléry Vnitřní měření teploty pro řízení teploty ve vodovodní distribuční siti	Ritzení proudění vzduchu v místnos- tech v závislosti na požadavcích nebo příromosti osob Nastavení teploty s kompenzací teplo- ty dodávaného vzduchu Řízení vlhkosti vstupujícho a vystupují- cího vzduchu v místnosti	Automatické řízení denního světla Automatická detekce přítomnosti sosb, manuání zap./automatické vyp. Automatická detekce přítomnosti, manuání zap./stmívání Automatická detekce přítomnosti, automat. zap./automatické vyp. Automatická detekce přítomnosti, automat. zap./automatické vyp. Automatická detekce přítomnosti, automatické zap./stmívání	 Kombinované řízení osvětlení/ žaluzi/topení/větrání/klimati- zace (HVAC)
В	 Individuální řízení jednotlivých mistnosti s komunikací mezi kont- roléry Vnitírú měření teploty pro řízení tep- loty ve vodovodní distribuční síti Částečné vzájemné blokování mezi řídícím systémem vytápění a chla- zení (nezávísle na systému HVAC= topení, větřaní, klimatízacé 	– Časové závislé řízení proudění vzdu- chu v jednotlivých mistnostech – Nastavení teploty s kompenzací teplo- ty dodávaného vzduchu řízení vlíhkosti vstupujícho a vystupují- cího vzduchu v mistnosti	- Manuální řízení denního světla - Automatická detekce přítomnosti osob, manuání zap /automatická vyp Automatická detekce přítomnosti, manuální zap./stmívání - Automatická detekce přítomnosti, automat. zap./automatické vyp Automatická detekce přítomnosti, automatická detekce přítomnosti, automatická detekce přítomnosti, automatická zap./stmívány.	 – Motorické ovládání s automa- tickým řízením žaluzií
С	- Individuální automatické řízení jednotivých mistnosti termostatickým ventlý nebo elektronickým řídením systámem - Kompenzované řízení teploty ve vodovodní distribuční síti podle venkovní teploty - Částečné vzájemné blokování mezi systámy řízení topení/chlazení závlsté na výstám yřízení.	Casově závislé řízení proudění vzdu- chu v jednotlivých mistnostech Konstantní nastvení teploty vzduchu Omezení vřikosti vstupujícího vzduchu	Manuální řízení denního světla Manuální spínáz 2n/vyp. + při- davný signá pro nychlé zhasnutí Manuální spínač pro zapnutí/vy- pnutí	 Motorické ovládání s manuál- ním ovládáním žaluzií
	 Žádné automatické řízení Žádné řízení teploty vody v distri- buční síti Žádné vzájemné blokování mezi systémem řízení vytápění/chlazení 	 Žádné řízení proudění vzduchu v jednotlivých místnostech Žádné řízení teploty vstupujícího vzduchu Žádné řízení vlhkosti vzduchu 	- Manuální řízení denního světla - Manuální spínač pro zapnutí/vy- pnutí + přídavný signál pro rychlé zhasnutí - Manuální spínač pro zapnutí/vypnutí	– Manuální ovládání žaluzií


Výsledky studie

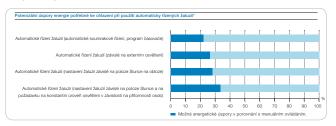
Využitelné literární zdroje jasně naznačují významný potenciál pro optimalizaci při snižování energetické spotřeby využitím moderních systémů elektrické instalace.

Celkově se při realizaci opatření vedoucích k optimalizaci řízení technologií v budovách pohybují průměrné hodnoty energetických úspor v rozpětí 11 až 31 %.

Příslušné horní a spodní střední hodnoty snížení spotřeby energie, tak jak byly zaznamenány ve studii pro ZVEI, vidíme v následujícím grafu. Přitom je třeba zdůraznit, že prostřednictvím KNX lze společným řízením jednotlivých technologií dosáhnout vyšších úspor energie, než jaké jsou dosažitelné při použití standardních prostředků měření a regulace.

Snížení spotřeby energie využitím inteligentního řízení budov a domů

Horní a spodní střední hodnoty snížení spotřeby energie dle studie "Potenciál úspor energie s využitím moderních elektrických instalací".

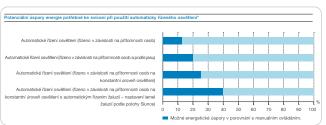

Vědecká studie provedená na základě normy DIN V 18599

Kromě studie zmíněné na předchozí straně zpracovala v roce 2008 Univerzita aplikovaných přírodních věd v Biberachu na žádost společnosti ABB také studii "Možné úspory energie a zvýšení účinnosti jejího využití sběrnicovou technologií a automatizací místností a budov".

Účinnost komponentů technologie ABB i-bus® KNX byla vědecky studována na základě ustanovení německé normy DIN V 18599. Ve výzkumném projektu byl použit profil "otevřené kanceláře"

u klasické budovy. Norma DIN V 18599 byla navržena německým výborem pro normy DIN a týká se topení, větrání a osvětlení budov. Norma byla zavedena jako prováděcí dokument evropské směrnice č. 2002/91/EC o energetické náročnosti budov a v Německu slouží jako základ při vydávání energetických certifikátů budov.

Potenciální úspory energie potřebné ke chlazení při použití automaticky řízených žaluzií*


* Zpracováno Univerzitou aplikovaných přírodních věd v Biberachu s využitím komponent technologie ABB i-bus® KNX, které byly aplikovány na uživatelský profil "otevřená kancelář" (uživatelský profil 3 podle DIN V 18599-10:2005-07), na příkladu klasické kancelářské budovy. Použit program 5S IBP:185599. Možné úspory se týkají spotřeby energie.

Výsledky výzkumu jsou obsaženy ve studii "Možné úspory energie a zvýšení účinnosti jejího využití sběrnicovou technologií a automatizací místností a budov", která byla realizována pro potřeby společnosti ABB v roce 2008.

Systém ABB i-bus® KNX je založen na technologii KNX, která se stala celosvětovým standardem pro inteligentní řízení budov (ISO/IEC 14543). Na základě výpočtů a šetření citovaná studie ukazuje, že při použití této sběrnicové technologie existuje významný potenciál úspor při automatizaci budov. Úroveň možných úspor závisí na příslušné funkci nebo kombinaci funkcí.

Celkový závěr: "Tato studie ukazuje, že kombinací několika funkcí je možno dosáhnout až 40% úspor energie v kancelářských budovách".

Potenciální úspory energie potřebné ke svícení při použití automaticky řízeného osvětlení*

| idb | journal | 6/2012 | **27**

* Zpracováno Univerzitou aplikovaných přírodních věd v Biberachu s využitím komponent technologie ABB i-bus® KNX, které byly aplikovány na uživatelský profil "otevřená kancelář" (uživatelský profil 3 podle DIN V 18599-10:2005-07), na příkladu klasické kancelářské budovy. Použit program 5S IBP:185599. Možné úspory se týkají spotřeby energie. Výsledky výzkumu jsou obsaženy ve studii "Možné úspory energie a zvýšení účinnosti jejího využití sběrnicovou technologií a automatizací místností a budov", která byla realizována pro potřeby společnosti ABB v roce 2008.

Zkušenosti ABB s řízením konstantní úrovně osvětlení

V téměř veškeré technické literatuře je řízení konstantní úrovně osvětlení velmi často spojováno s možnými úsporami elektrické energie. ABB provedla řadu vlastních zkoušek zaměřených na správnost této výpovědi a určení konkrétních hodnot úspory.

Měření byla provedena v kancelářské budově s místnostmi pro organizaci seminářů. Řízení na konstantní úroveň osvětlení, na rozdíl od plně zapnutého osvětlení, spočívá v tom, že požadované intenzity světla v místnosti je dosaženo plynulým řízeným přidáváním "umělého osvětlení" potřebného k udržení definované úrovně osvětlení (v konkrétním případě 500 luxů). Odebíráno je pouze takové množství energie, které je nutné pro umělé osvětlení.

Měření 1, říjen 2008

Školicí místnost, přízemí, zatažená obloha, otevřené žaluzie, doba testování a používání od 8:00 hod do 15:30 hod.: bylo třeba zajistit přídavné osvětlení hodnoty 2 707 luxhodin. Pokud by bylo zapnuto neřízené osvětlení, bylo by třeba 3 750 luxhodin (lxh: 1 luxhodina je intenzita osvětlení 1 luxu dopadající na 1 m² plochy po dobu 1 hodiny).

	Měřená intenzita	Požadované
Čas	osvětlení*	přídavné osvětlení
08:00 - 08:30	25 lx	237 lxh
08:30 - 09:00	90 lx	205 lxh
09:00 - 09:30	120 lx	190 lxh
09:30 - 10:00	190 lx	155 lxh
10:00 - 10:30	210 lx	145 lxh
10:30 - 11:00	140 lx	180 lxh
11:00 - 11:30	150 lx	175 lxh
11:30 - 12:00	180 lx	160 lxh
12:00 - 12:30	220 lx	140 kh
12:30 - 13:00	200 lx	150 lxh
13:00 - 13:30	180 lx	160 lxh
13:30 - 14:00	170 lx	165 lxh
14:00 - 14:30	120 lx	190 lxh
14:30 - 15:00	40 lx	230 lxh
15:00 - 15:30	50 lx	225 lxh
Možné úspory u této m	istnosti:	cca. 28 %

Měření 2, říjen 2008

Konferenční místnost, první podlaží, velmi zatažená obloha, otevřené žaluzie, doba testování a používání od 8:00 hod do 17:00 hod.: bylo třeba zajistit přídavné osvětlení hodnoty 2 820 lxh. Pokud by bylo zapnuto neřízené osvětlení, bylo by třeba 4 500 luxhodin.

	Měřená intenzita	Požadované	
Čas	osvětlení*	přídavné osvětlení	
08:00 – 08:30	12 lx	244 lxh	
08:30 – 09:00	35 lx	232 lxh	
09:00 – 09:30	50 lx	225 lxh	
09:30 – 10:00	65 lx	218 lxh	
10:00 – 10:30	90 lx	205 lxh	
10:30 – 11:00	100 lx	200 lxh	
11:00 – 11:30	140 lx	180 lxh	
11:30 – 12:00	265 lx	118 lxh	
12:00 – 12:30	350 lx	75 lxh	
12:30 – 13:00	370 lx	65 lxh	
13:00 – 13:30	370 lx	65 lxh	
13:30 – 14:00	350 lx	75 lxh	
14:00 – 14:30	315 lx	92 lxh	
14:30 – 15:00	265 lx	118 lxh	
15:00 – 15:30	235 lx	132 lxh	
15:30 – 16:00	160 lx	170 lxh	
16:00 – 16:30	100 lx	200 lxh	
16:30 – 17:00	87 lx	206 lxh	
Možné úspory u této místno	sti:	cca. 37 %	

Měření 3, říjen 2008

Laboratoř, druhé podlaží, slunečný den, otevřené žaluzie, doba testování a používání od 8:00 hod do 17:00 hod.: bylo třeba zajistit přídavné osvětlení hodnoty 1 517 lxh. Pokud by bylo zapnuto neřízené osvětlení, bylo by třeba 4 500 lxh.

Šas 08:00 – 08:30	osvětlení*	
08:00 - 08:30	0010110111	přídavné osvětlení
	7 lx	246 lxh
08:30 - 09:00	21 lx	240 lxh
09:00 - 09:30	44 lx	228 lxh
9:30 – 10:00	147 lx	176 lxh
0:00 – 10:30	217 lx	141 lxh
0:30 - 11:00	265 lx	117 lxh
1:00 – 11:30	352 lx	148 lxh
1:30 – 12:00	371 lx	129 lxh
2:00 – 12:30	429 lx	71 lxh
2:30 – 13:00	633 lx	0 lxh
3:00 – 13:30	458 lx	21 lxh
3:30 - 14:00	547 lx	0 lxh
4:00 – 14:30	1276 lx	0 lxh
4:30 – 15:00	1263 lx	0 lxh
5:00 – 15:30	1508 lx	0 lxh
5:30 – 16:00	1830 lx	0 lxh
6:00 – 16:30	1988 lx	0 lxh
6:30 – 17:00	2000 lx	0 lxh

Výsledky:

- 1. Při řízení osvětlení na konstantní úroveň osvětlení je možné dosáhnout vysokých úspor elektrické energie.
- Je obtížné uvést obecně platné tvrzení. Výsledek závisí na více faktorech, např. denním světle, uspořádání místnosti, okolních budovách atd.

Provozními studiemi u ABB bylo zjištěno, že řízením osvětlení na konstantní úroveň bylo dosaženo více než 25 % úspor energie v porovnání s manuálním ovládáním osvětlení.

Zdroi

Energetická efektivnost v budovách s využitím sběrnicové technologie ABB i-bus® KNX – dokument spoločnosti ABB

Pokračovanie v nasledujúcom čísle.

-mk-

28 6/2012 | idb | journal